Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 12.938
Filtrar
1.
Otolaryngol Pol ; 78(2): 18-22, 2024 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-38623857

RESUMO

<b><br>Introduction:</b> Electromyography (EMG) of the larynx provides information on the electrophysiological condition of laryngeal muscles and innervation. Integration of information obtained from the EMG exams with the clinical parameters as obtained by other methods for laryngeal assessment (endoscopy, perceptual and acoustic analysis, voice self-assessment) provides a multidimensional picture of dysphonia, which is of particular importance in patients with vocal fold (VF) mobility disorders accompanied by glottic insufficiency.</br> <b><br>Aim:</b> The aim of this study was to evaluate laryngeal EMG records acquired in subjects with unilateral vocal fold immobilization with signs of atrophy and glottic insufficiency.</br> <b><br>Material and methods:</b> From the available material of 74 EMG records of patients referred for the exam due to unilateral laryngeal paralysis, records of 17 patients with endoscopic features suggestive of complete laryngeal muscle denervation were selected. The EMG study of thyroarytenoid muscles of mobile and immobile VFs was evaluated qualitatively and quantitatively at rest and during volitional activity involving free phonation of vowel /e/ [ε].</br> <b><br>Results:</b> In all patients, the EMG records from mobile VFs were significantly different from those from immobile VFs. Despite endoscopic features of paralysis, no VF activity whatsoever was observed in as few as 2 patients so as to meet the neurophysiological definition of paralysis. In 88% of cases, electromyographic activity of the thyroarytenoid muscle was observed despite immobilization and atrophy of the vocal fold. In these patients, neurogenic type of record was observed with numerous high- -amplitude mobility units. On the basis of the results, quantitative features of EMG records indicative of paralysis and residual activity of the thyroarytenoid muscle were determined.</br> <b><br>Conclusions:</b> Qualitative and quantitative analysis of laryngeal EMG records provides detailed information on the condition of vocal fold muscles and innervation. EMG records of mobile vs immobile VFs differ significantly from each other. Endoscopic evaluation does not provide sufficient basis for the diagnosis of complete laryngeal muscle denervation.</br>.


Assuntos
Disfonia , Paralisia das Pregas Vocais , Humanos , Prega Vocal , Paralisia das Pregas Vocais/diagnóstico , Eletromiografia/métodos , Músculos Laríngeos , Endoscopia , Atrofia
2.
Sci Rep ; 14(1): 8475, 2024 04 11.
Artigo em Inglês | MEDLINE | ID: mdl-38605084

RESUMO

Prolonged local vibration (LV) can induce neurophysiological adaptations thought to be related to long-term potentiation or depression. Yet, how changes in intracortical excitability may be involved remains to be further investigated as previous studies reported equivocal results. We therefore investigated the effects of 30 min of LV applied to the right flexor carpi radialis muscle (FCR) on both short-interval intracortical inhibition (SICI) and intracortical facilitation (ICF). SICI and ICF were measured through transcranial magnetic stimulation before and immediately after 30 min of FCR LV (vibration condition) or 30 min of rest (control condition). Measurements were performed during a low-intensity contraction (n = 17) or at rest (n = 7). No significant SICI nor ICF modulations were observed, whether measured during isometric contractions or at rest (p = 0.2). Yet, we observed an increase in inter-individual variability for post measurements after LV. In conclusion, while intracortical excitability was not significantly modulated after LV, increased inter-variability observed after LV may suggest the possibility of divergent responses to prolonged LV exposure.


Assuntos
Córtex Motor , Vibração , Eletromiografia/métodos , Potencial Evocado Motor/fisiologia , Córtex Motor/fisiologia , Músculo Esquelético/fisiologia , Estimulação Magnética Transcraniana/métodos , Inibição Neural/fisiologia
3.
eNeuro ; 11(4)2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38565296

RESUMO

Repetitive transcranial magnetic stimulation (rTMS) is a non-invasive brain stimulation technique capable of inducing neuroplasticity as measured by changes in peripheral muscle electromyography (EMG) or electroencephalography (EEG) from pre-to-post stimulation. However, temporal courses of neuromodulation during ongoing rTMS are unclear. Monitoring cortical dynamics via TMS-evoked responses using EMG (motor-evoked potentials; MEPs) and EEG (transcranial-evoked potentials; TEPs) during rTMS might provide further essential insights into its mode of action - temporal course of potential modulations. The objective of this study was to first evaluate the validity of online rTMS-EEG and rTMS-EMG analyses, and second to scrutinize the temporal changes of TEPs and MEPs during rTMS. As rTMS is subject to high inter-individual effect variability, we aimed for single-subject analyses of EEG changes during rTMS. Ten healthy human participants were stimulated with 1,000 pulses of 1 Hz rTMS over the motor cortex, while EEG and EMG were recorded continuously. Validity of MEPs and TEPs measured during rTMS was assessed in sensor and source space. Electrophysiological changes during rTMS were evaluated with model fitting approaches on a group- and single-subject level. TEPs and MEPs appearance during rTMS was consistent with past findings of single pulse experiments. Heterogeneous temporal progressions, fluctuations or saturation effects of brain activity were observed during rTMS depending on the TEP component. Overall, global brain activity increased over the course of stimulation. Single-subject analysis revealed inter-individual temporal courses of global brain activity. The present findings are in favor of dose-response considerations and attempts in personalization of rTMS protocols.


Assuntos
Córtex Motor , Estimulação Magnética Transcraniana , Humanos , Eletromiografia/métodos , Estimulação Magnética Transcraniana/métodos , Córtex Motor/fisiologia , Eletroencefalografia , Músculo Esquelético/fisiologia
4.
J Biomech ; 167: 112093, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38615480

RESUMO

In general, muscle activity can be directly measured using Electromyography (EMG) or calculated with musculoskeletal models. However, both methods are not suitable for non-technical users and unstructured environments. It is desired to establish more portable and easy-to-use muscle activity estimation methods. Deep learning (DL) models combined with inertial measurement units (IMUs) have shown great potential to estimate muscle activity. However, it frequently occurs in clinical scenarios that a very small amount of data is available and leads to limited performance of the DL models, while the augmentation techniques to efficiently expand a small sample size for DL model training are rarely used. The primary aim of the present study was to develop a novel DL model to estimate the EMG envelope during gait using IMUs with high accuracy. A secondary aim was to develop a novel model-based data augmentation method to improve the performance of the estimation model with small-scale dataset. Therefore, in the present study, a time convolutional network-based generative adversarial network, namely MuscleGAN, was proposed for data augmentation. Moreover, a subject-independent regression DL model was developed to estimate EMG envelope. Results suggested that the proposed two-stage method has better generalization and estimation performance than the commonly used existing methods. Pearson correlation coefficient and normalized root-mean-square errors derived from the proposed method reached up to 0.72 and 0.13, respectively. It was indicated that the MuscleGAN indeed improved the estimation accuracy of lower limb EMG envelope from 70% to 72%. Thus, even using only two IMUs and a very small-scale dataset, the proposed model is still capable of accurately estimating lower limb EMG envelope, demonstrating considerable potential for its application in clinical and daily life scenarios.


Assuntos
Marcha , Redes Neurais de Computação , Marcha/fisiologia , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Atenção
5.
J Neuroeng Rehabil ; 21(1): 57, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38627772

RESUMO

INTRODUCTION: Despite recent technological advances that have led to sophisticated bionic prostheses, attaining embodied solutions still remains a challenge. Recently, the investigation of prosthetic embodiment has become a topic of interest in the research community, which deals with enhancing the perception of artificial limbs as part of users' own body. Surface electromyography (sEMG) interfaces have emerged as a promising technology for enhancing upper-limb prosthetic control. However, little is known about the impact of these sEMG interfaces on users' experience regarding embodiment and their interaction with different functional levels. METHODS: To investigate this aspect, a comparison is conducted among sEMG configurations with different number of sensors (4 and 16 channels) and different time delay. We used a regression algorithm to simultaneously control hand closing/opening and forearm pronation/supination in an immersive virtual reality environment. The experimental evaluation includes 24 able-bodied subjects and one prosthesis user. We assess functionality with the Target Achievement Control test, and the sense of embodiment with a metric for the users perception of self-location, together with a standard survey. RESULTS: Among the four tested conditions, results proved a higher subjective embodiment when participants used sEMG interfaces employing an increased number of sensors. Regarding functionality, significant improvement over time is observed in the same conditions, independently of the time delay implemented. CONCLUSIONS: Our work indicates that a sufficient number of sEMG sensors improves both, functional and subjective embodiment outcomes. This prompts discussion regarding the potential relationship between these two aspects present in bionic integration. Similar embodiment outcomes are observed in the prosthesis user, showing also differences due to the time delay, and demonstrating the influence of sEMG interfaces on the sense of agency.


Assuntos
Membros Artificiais , Humanos , Eletromiografia/métodos , Extremidade Superior , Mãos , Algoritmos
6.
J Neuroeng Rehabil ; 21(1): 47, 2024 04 04.
Artigo em Inglês | MEDLINE | ID: mdl-38575926

RESUMO

Decoding movement intentions from motor unit (MU) activities to represent neural drive information plays a central role in establishing neural interfaces, but there remains a great challenge for obtaining precise MU activities during sustained muscle contractions. In this paper, we presented an online muscle force prediction method driven by individual MU activities that were decomposed from prolonged surface electromyogram (SEMG) signals in real time. In the training stage of the proposed method, a set of separation vectors was initialized for decomposing MU activities. After transferring each decomposed MU activity into a twitch force train according to its action potential waveform, a neural network was designed and trained for predicting muscle force. In the subsequent online stage, a practical double-thread-parallel algorithm was developed. One frontend thread predicted the muscle force in real time utilizing the trained network and the other backend thread simultaneously updated the separation vectors. To assess the performance of the proposed method, SEMG signals were recorded from the abductor pollicis brevis muscles of eight subjects and the contraction force was simultaneously collected. With the update procedure in the backend thread, the force prediction performance of the proposed method was significantly improved in terms of lower root mean square deviation (RMSD) of around 10% and higher fitness (R2) of around 0.90, outperforming two conventional methods. This study provides a promising technique for real-time myoelectric applications in movement control and health.


Assuntos
Contração Muscular , Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Contração Muscular/fisiologia , Potenciais de Ação , Redes Neurais de Computação
7.
Sensors (Basel) ; 24(6)2024 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-38544097

RESUMO

Surface electromyography is a technique used to measure the electrical activity of muscles. sEMG can be used to assess muscle function in various settings, including clinical, academic/industrial research, and sports medicine. The aim of this study is to develop a wearable textile sensor for continuous sEMG monitoring. Here, we have developed an integrated biomedical monitoring system that records sEMG signals through a textile electrode embroidered within a smart sleeve bandage for telemetric assessment of muscle activities and fatigue. We have taken an "Internet of Things"-based approach to acquire the sEMG, using a Myoware sensor and transmit the signal wirelessly through a WiFi-enabled microcontroller unit (NodeMCU; ESP8266). Using a wireless router as an access point, the data transmitted from ESP8266 was received and routed to the webserver-cum-database (Xampp local server) installed on a mobile phone or PC for processing and visualization. The textile electrode integrated with IoT enabled us to measure sEMG, whose quality is similar to that of conventional methods. To verify the performance of our developed prototype, we compared the sEMG signal recorded from the biceps, triceps, and tibialis muscles, using both the smart textile electrode and the gelled electrode. The root mean square and average rectified values of the sEMG measured using our prototype for the three muscle types were within the range of 1.001 ± 0.091 mV to 1.025 ± 0.060 mV and 0.291 ± 0.00 mV to 0.65 ± 0.09 mV, respectively. Further, we also performed the principal component analysis for a total of 18 features (15 time domain and 3 frequency domain) for the same muscle position signals. On the basis on the hierarchical clustering analysis of the PCA's score, as well as the one-way MANOVA of the 18 features, we conclude that the differences observed in the data for the different muscle types as well as the electrode types are statistically insignificant.


Assuntos
Têxteis , Dispositivos Eletrônicos Vestíveis , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Monitorização Fisiológica/métodos
8.
Comput Biol Med ; 173: 108384, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38554657

RESUMO

Reliable prediction of multi-finger forces is crucial for neural-machine interfaces. Various neural decoding methods have progressed substantially for accurate motor output predictions. However, most neural decoding methods are performed in a supervised manner, i.e., the finger forces are needed for model training, which may not be suitable in certain contexts, especially in scenarios involving individuals with an arm amputation. To address this issue, we developed an unsupervised neural decoding approach to predict multi-finger forces using spinal motoneuron firing information. We acquired high-density surface electromyogram (sEMG) signals of the finger extensor muscle when subjects performed single-finger and multi-finger tasks of isometric extensions. We first extracted motor units (MUs) from sEMG signals of the single-finger tasks. Because of inevitable finger muscle co-activation, MUs controlling the non-targeted fingers can also be recruited. To ensure an accurate finger force prediction, these MUs need to be teased out. To this end, we clustered the decomposed MUs based on inter-MU distances measured by the dynamic time warping technique, and we then labeled the MUs using the mean firing rate or the firing rate phase amplitude. We merged the clustered MUs related to the same target finger and assigned weights based on the consistency of the MUs being retained. As a result, compared with the supervised neural decoding approach and the conventional sEMG amplitude approach, our new approach can achieve a higher R2 (0.77 ± 0.036 vs. 0.71 ± 0.11 vs. 0.61 ± 0.09) and a lower root mean square error (5.16 ± 0.58 %MVC vs. 5.88 ± 1.34 %MVC vs. 7.56 ± 1.60 %MVC). Our findings can pave the way for the development of accurate and robust neural-machine interfaces, which can significantly enhance the experience during human-robotic hand interactions in diverse contexts.


Assuntos
Dedos , Mãos , Humanos , Dedos/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Neurônios Motores/fisiologia
9.
J Neural Eng ; 21(2)2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38471169

RESUMO

Objective. Chronic motor impairments of arms and hands as the consequence of a cervical spinal cord injury (SCI) have a tremendous impact on activities of daily life. A considerable number of people however retain minimal voluntary motor control in the paralyzed parts of the upper limbs that are measurable by electromyography (EMG) and inertial measurement units (IMUs). An integration into human-machine interfaces (HMIs) holds promise for reliable grasp intent detection and intuitive assistive device control.Approach. We used a multimodal HMI incorporating EMG and IMU data to decode reach-and-grasp movements of groups of persons with cervical SCI (n = 4) and without (control, n = 13). A post-hoc evaluation of control group data aimed to identify optimal parameters for online, co-adaptive closed-loop HMI sessions with persons with cervical SCI. We compared the performance of real-time, Random Forest-based movement versus rest (2 classes) and grasp type predictors (3 classes) with respect to their co-adaptation and evaluated the underlying feature importance maps.Main results. Our multimodal approach enabled grasp decoding significantly better than EMG or IMU data alone (p<0.05). We found the 0.25 s directly prior to the first touch of an object to hold the most discriminative information. Our HMIs correctly predicted 79.3 ± STD 7.4 (102.7 ± STD 2.3 control group) out of 105 trials with grand average movement vs. rest prediction accuracies above 99.64% (100% sensitivity) and grasp prediction accuracies of 75.39 ± STD 13.77% (97.66 ± STD 5.48% control group). Co-adaption led to higher prediction accuracies with time, and we could identify adaptions in feature importances unique to each participant with cervical SCI.Significance. Our findings foster the development of multimodal and adaptive HMIs to allow persons with cervical SCI the intuitive control of assistive devices to improve personal independence.


Assuntos
Medula Cervical , Traumatismos da Medula Espinal , Humanos , Eletromiografia/métodos , Mãos , Braço , Força da Mão
10.
J Physiol ; 602(7): 1385-1404, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38513002

RESUMO

The purpose of our study was to investigate the influence of a stretch intervention on the common modulation of discharge rate among motor units in the calf muscles during a submaximal isometric contraction. The current report comprises a computational analysis of a motor unit dataset that we published previously (Mazzo et al., 2021). Motor unit activity was recorded from the three main plantar flexor muscles while participants performed an isometric contraction at 10% of the maximal voluntary contraction force before and after each of two interventions. The interventions were a control task (standing balance) and static stretching of the plantar flexor muscles. A factorization analysis on the smoothed discharge rates of the motor units from all three muscles yielded three modes that were independent of the individual muscles. The composition of the modes was not changed by the standing-balance task, whereas the stretching exercise reduced the average correlation in the second mode and increased it in the third mode. A centroid analysis on the correlation values showed that most motor units were associated with two or three modes, which were presumed to indicate shared synaptic inputs. The percentage of motor units adjacent to the seven centroids changed after both interventions: Control intervention, mode 1 decreased and the shared mode 1 + 2 increased; stretch intervention, shared modes either decreased (1 + 2) or increased (1 + 3). These findings indicate that the neuromuscular adjustments during both interventions were sufficient to change the motor unit modes when the same task was performed after each intervention. KEY POINTS: Based on covariation of the discharge rates of motor units in the calf muscles during a submaximal isometric contraction, factor analysis was used to assign the correlated discharge trains to three motor unit modes. The motor unit modes were determined from the combined set of all identified motor units across the three muscles before and after each participant performed a control and a stretch intervention. The composition of the motor unit modes changed after the stretching exercise, but not after the control task (standing balance). A centroid analysis on the distribution of correlation values found that most motor units were associated with a shared centroid and this distribution, presumably reflecting shared synaptic input, changed after both interventions. Our results demonstrate how the distribution of multiple common synaptic inputs to the motor neurons innervating the plantar flexor muscles changes after a brief series of stretches.


Assuntos
Contração Isométrica , Músculo Esquelético , Humanos , Contração Isométrica/fisiologia , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Perna (Membro)/fisiologia , Neurônios Motores/fisiologia , Contração Muscular/fisiologia
11.
Sensors (Basel) ; 24(5)2024 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-38475036

RESUMO

Gait disorder is common among people with neurological disease and musculoskeletal disorders. The detection of gait disorders plays an integral role in designing appropriate rehabilitation protocols. This study presents a clinical gait analysis of patients with polymyalgia rheumatica to determine impaired gait patterns using machine learning models. A clinical gait assessment was conducted at KATH hospital between August and September 2022, and the 25 recruited participants comprised 18 patients and 7 control subjects. The demographics of the participants follow: age 56 years ± 7, height 175 cm ± 8, and weight 82 kg ± 10. Electromyography data were collected from four strained hip muscles of patients, which were the rectus femoris, vastus lateralis, biceps femoris, and semitendinosus. Four classification models were used-namely, support vector machine (SVM), rotation forest (RF), k-nearest neighbors (KNN), and decision tree (DT)-to distinguish the gait patterns for the two groups. SVM recorded the highest accuracy of 85% among the classifiers, while KNN had 75%, RF had 80%, and DT had the lowest accuracy of 70%. Furthermore, the SVM classifier had the highest sensitivity of 92%, while RF had 86%, DT had 90%, and KNN had the lowest sensitivity of 84%. The classifiers achieved significant results in discriminating between the impaired gait pattern of patients with polymyalgia rheumatica and control subjects. This information could be useful for clinicians designing therapeutic exercises and may be used for developing a decision support system for diagnostic purposes.


Assuntos
Polimialgia Reumática , Humanos , Pessoa de Meia-Idade , Marcha/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Movimento , Máquina de Vetores de Suporte
12.
Artigo em Inglês | MEDLINE | ID: mdl-38427549

RESUMO

We designed and tested a system for real-time control of a user interface by extracting surface electromyographic (sEMG) activity from eight electrodes in a wristband configuration. sEMG data were streamed into a machine-learning algorithm that classified hand gestures in real-time. After an initial model calibration, participants were presented with one of three types of feedback during a human-learning stage: veridical feedback, in which predicted probabilities from the gesture classification algorithm were displayed without alteration; modified feedback, in which we applied a hidden augmentation of error to these probabilities; and no feedback. User performance was then evaluated in a series of minigames, in which subjects were required to use eight gestures to manipulate their game avatar to complete a task. Experimental results indicated that relative to the baseline, the modified feedback condition led to significantly improved accuracy. Class separation also improved, though this trend was not significant. These findings suggest that real-time feedback in a gamified user interface with manipulation of feedback may enable intuitive, rapid, and accurate task acquisition for sEMG-based gesture recognition applications.


Assuntos
Algoritmos , Gestos , Humanos , Eletromiografia/métodos , Retroalimentação , 60453
13.
Artigo em Inglês | MEDLINE | ID: mdl-38427548

RESUMO

The poor generalization performance and heavy training burden of the gesture classification model contribute as two main barriers that hinder the commercialization of sEMG-based human-machine interaction (HMI) systems. To overcome these challenges, eight unsupervised transfer learning (TL) algorithms developed on the basis of convolutional neural networks (CNNs) were explored and compared on a dataset consisting of 10 gestures from 35 subjects. The highest classification accuracy obtained by CORrelation Alignment (CORAL) reaches more than 90%, which is 10% higher than the methods without using TL. In addition, the proposed model outperforms 4 common traditional classifiers (KNN, LDA, SVM, and Random Forest) using the minimal calibration data (two repeated trials for each gesture). The results also demonstrate the model has a great transfer robustness/flexibility for cross-gesture and cross-day scenarios, with an accuracy of 87.94% achieved using calibration gestures that are different with model training, and an accuracy of 84.26% achieved using calibration data collected on a different day, respectively. As the outcomes confirm, the proposed CNN TL method provides a practical solution for freeing new users from the complicated acquisition paradigm in the calibration process before using sEMG-based HMI systems.


Assuntos
Gestos , Redes Neurais de Computação , Humanos , Calibragem , Eletromiografia/métodos , Algoritmos , Aprendizado de Máquina
14.
Neurodiagn J ; 64(1): 24-32, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38437023

RESUMO

We report a case where neuromonitoring, using motor evoked potentials (MEP), detected an intraoperative L5 nerve root deficit during a lumbosacral decompression and instrumented fusion procedure. Critically, the MEP changes were not preceded nor accompanied by any significant spontaneous electromyography (sEMG) activity. Presumptive L5 innervated muscles, including tibialis anterior (TA), extensor hallucis longus (EHL) and gluteus maximus, were targets for nerve root surveillance using combined MEP and sEMG techniques. During a high-grade spondylolisthesis correction procedure, attempts to align a left-sided rod resulted in repeated loss and recovery cycles of MEP from the TA and EHL. No accompanying EMG alerts were associated with any of the MEP changes nor were MEP variations seen from muscles innervated above and below L5. After several attempts, the rod alignment was achieved, but significant MEP signal decrement (72% decrease) remained from the EHL. Postoperatively, the patient experienced significant foot drop on the left side that recovered over a period of 3 months. This case contributes to a growing body of evidence that exclusive reliance on sEMG for spinal nerve root scrutiny can be unreliable and MEP may provide more dependable data on nerve root patency.


Assuntos
Potencial Evocado Motor , Monitorização Neurofisiológica Intraoperatória , Humanos , Potencial Evocado Motor/fisiologia , Eletromiografia/métodos , Monitorização Neurofisiológica Intraoperatória/métodos , Vértebras Lombares/cirurgia , Raízes Nervosas Espinhais
15.
Artigo em Inglês | MEDLINE | ID: mdl-38466606

RESUMO

Computational biomechanical analysis plays a pivotal role in understanding and improving human movements and physical functions. Although physics-based modeling methods can interpret the dynamic interaction between the neural drive to muscle dynamics and joint kinematics, they suffer from high computational latency. In recent years, data-driven methods have emerged as a promising alternative due to their fast execution speed, but label information is still required during training, which is not easy to acquire in practice. To tackle these issues, this paper presents a novel physics-informed deep learning method to predict muscle forces without any label information during model training. In addition, the proposed method could also identify personalized muscle-tendon parameters. To achieve this, the Hill muscle model-based forward dynamics is embedded into the deep neural network as the additional loss to further regulate the behavior of the deep neural network. Experimental validations on the wrist joint from six healthy subjects are performed, and a fully connected neural network (FNN) is selected to implement the proposed method. The predicted results of muscle forces show comparable or even lower root mean square error (RMSE) and higher coefficient of determination compared with baseline methods, which have to use the labeled surface electromyography (sEMG) signals, and it can also identify muscle-tendon parameters accurately, demonstrating the effectiveness of the proposed physics-informed deep learning method.


Assuntos
Aprendizado Profundo , Músculo Esquelético , Humanos , Eletromiografia/métodos , Músculo Esquelético/fisiologia , Redes Neurais de Computação , Movimento/fisiologia
16.
J Neural Eng ; 21(2)2024 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-38479007

RESUMO

Objective. Neural interfacing via decomposition of high-density surface electromyography (HD-sEMG) should be robust to signal non-stationarities incurred by changes in joint pose and contraction intensity.Approach. We present an adaptive real-time motor unit decoding algorithm and test it on HD-sEMG collected from the extensor carpi radialis brevis during isometric contractions over a range of wrist angles and contraction intensities. The performance of the algorithm was verified using high-confidence benchmark decompositions derived from concurrently recorded intramuscular electromyography.Main results. In trials where contraction conditions between the initialization and testing data differed, the adaptive decoding algorithm maintained significantly higher decoding accuracies when compared to static decoding methods.Significance. Using "gold standard" verification techniques, we demonstrate the limitations of filter re-use decoding methods and show the necessity of parameter adaptation to achieve robust neural decoding.


Assuntos
Contração Isométrica , Músculo Esquelético , Eletromiografia/métodos , Punho , Algoritmos
17.
J Neural Eng ; 21(2)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38525843

RESUMO

Objective.Surface electromyography (sEMG) is a non-invasive technique that records the electrical signals generated by muscles through electrodes placed on the skin. sEMG is the state-of-the-art method used to control active upper limb prostheses because of the association between its amplitude and the neural drive sent from the spinal cord to muscles. However, accurately estimating the kinematics of a freely moving human hand using sEMG from extrinsic hand muscles remains a challenge. Deep learning has been recently successfully applied to this problem by mapping raw sEMG signals into kinematics. Nonetheless, the optimal number of EMG signals and the type of pre-processing that would maximize performance have not been investigated yet.Approach.Here, we analyze the impact of these factors on the accuracy in kinematics estimates. For this purpose, we processed monopolar sEMG signals that were originally recorded from 320 electrodes over the forearm muscles of 13 subjects. We used a previously published deep learning method that can map the kinematics of the human hand with real-time resolution.Main results.While myocontrol algorithms essentially use the temporal envelope of the EMG signal as the only EMG feature, we show that our approach requires the full bandwidth of the signal in the temporal domain for accurate estimates. Spatial filtering however, had a smaller impact and low-order spatial filters may be suitable. Moreover, reducing the number of channels by ablation resulted in large performance losses. The highest accuracy was reached with the highest number of available sensors (n = 320). Importantly and unexpected, our results suggest that increasing the number of channels above those used in this study may further enhance the accuracy in predicting the kinematics of the human hand.Significance.We conclude that full bandwidth high-density EMG systems of hundreds of electrodes are needed for accurate kinematic estimates of the human hand.


Assuntos
Mãos , Músculo Esquelético , Humanos , Fenômenos Biomecânicos , Mãos/fisiologia , Músculo Esquelético/fisiologia , Eletromiografia/métodos , Algoritmos
18.
J Vis Exp ; (205)2024 Mar 08.
Artigo em Inglês | MEDLINE | ID: mdl-38526119

RESUMO

As the final connection between the nervous system and muscle, transmission at the neuromuscular junction (NMJ) is crucial for normal motor function. Single fiber electromyography (SFEMG) is a clinically relevant and sensitive technique that measures single muscle fiber action potential responses during voluntary contractions or nerve stimulations to assess NMJ transmission. The assessment and quantification of NMJ transmission involves two parameters: jitter and blocking. Jitter refers to the variability in timing (latency) between consecutive single-fiber action potentials (SFAPs). Blocking signifies the failure of NMJ transmission to initiate an SFAP response. Although SFEMG is a well-established and sensitive test in clinical settings, its application in preclinical research has been relatively infrequent. This report outlines the steps and criteria employed in performing stimulated SFEMG to quantify jitter and blocking in rodent models. This technique can be used in preclinical and clinical studies to gain insights into NMJ function in the context of health, aging, and disease.


Assuntos
Fibras Musculares Esqueléticas , Roedores , Animais , Eletromiografia/métodos , Fibras Musculares Esqueléticas/fisiologia , Junção Neuromuscular/fisiologia , Transmissão Sináptica
19.
PLoS One ; 19(3): e0291588, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38536803

RESUMO

The pelvic floor requires an integrated anatomical structure owing to its multiple functions. Therefore, it is necessary to study methods for improving muscle recruitment during training. This study aimed to analyze the effect of using an innovative vaginal trainer on the bioelectrical activity of the pelvic floor muscles. Pelvic positioning and interference factors, such as age, childbirth, sexual activity, urinary incontinence, and menopause, were also analyzed. A cross-sectional study assessed 30 women using an evaluation form, International Consultation on Incontinence Questionnaire-Short Form, and surface electromyography. The root mean square of a 5-second contraction period, peak root mean square values, area values, % maximal voluntary contraction (root mean square normalized by peak signal), and median frequency were collected. These findings with and without the use of a vaginal educator were compared in the anteversion, neutral, and retroversion pelvic positions. The use of a vaginal educator was found to increase the electromyographic activity of the pelvic floor muscles in the neutral position. In this position, older women showed an increased peak contraction when using the educator. Multiparas also benefited from increased bioelectric activity (root mean square and area). Sexually active women increased their bioelectric activity in a neutral position when using the trainer, exerting less effort in retroversion (%-maximal voluntary contraction). Incontinent and menopausal women exhibited slower body-building activation (decreased frequency) with the device, which requires further investigation. Our innovative biofeedback device induced greater recruitment of muscle fibers, is more effective in the neutral pelvic position, and may be effective in training the pelvic floor muscles, even in women with a greater tendency toward pelvic floor dysfunction.


Assuntos
Diafragma da Pelve , Incontinência Urinária , Feminino , Humanos , Idoso , Estudos Transversais , Contração Muscular/fisiologia , Eletromiografia/métodos
20.
Artif Intell Med ; 149: 102777, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38462279

RESUMO

Accurate finger gesture recognition with surface electromyography (sEMG) is essential and long-challenge in the muscle-computer interface, and many high-performance deep learning models have been developed to predict gestures. For these models, problem-specific tuning of network architecture is essential for improving the performance, yet it requires substantial knowledge of network architecture design and commitment of time and effort. This process thus imposes a major obstacle to the widespread and flexible application of modern deep learning. To address this issue, we present an auto-learning search framework (ALSF) to generate the integrated block-wised neural network (IBWNN) for sEMG-based gesture recognition. IBWNN contains several feature extraction blocks and dimensional reduction layers, and each feature extraction block integrates two sub-blocks (i.e., multi-branch convolutional block and triplet attention block). Meanwhile, ALSF generates optimal models for gesture recognition through the reinforcement learning method. The results show that the generated models yield state-of-the-art results compared to the modern popular networks on the open dataset Ninapro DB5. Moreover, compared to other networks, the generated models have fewer parameters and can be deployed in practical applications with less resource consumption.


Assuntos
Gestos , Redes Neurais de Computação , Eletromiografia/métodos , Reconhecimento Psicológico , Atenção , Algoritmos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...